Question Paper Code : X 10655

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020/ APRIL/MAY 2021
 Second Semester
 MA8251 : ENGINEERING MATHEMATICS - II
 [Common to all (Except Marine Engineering)]

(Regulations 2017)
Maximum : 100 Marks
Answer ALL questions.
PART - A
(10×2=20 Marks)

1. Given that α, β are the eigenvalues of the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$,form the matrix
whose eigenvalues are α^{2}, β^{2}.
2. If the canonical form in the three variables u, v, w is given by $3 \mathrm{v}^{2}+15 \mathrm{w}^{2}$ corresponding to a quadratic form, then state the nature, index, signature and rank of the quadratic form.
3. Check whether the vector

$$
\overrightarrow{\mathrm{F}}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{i}+(3 x z+2 x y) \hat{j}+(3 x y-2 x z+2 z) \hat{k}
$$

is solenoidal or not.
4. State Green's theorem in a plane.
5. State the polar form of the Cauchy Riemann equations.
6. Find the invariant points of the mapping $w=\frac{z-i}{1-i z}$.
7. State the Taylor series representation of an analytic function $f(z)$ about $z=a$.
8. State the nature of the singularity of $f(z)=z \cos \left(\frac{1}{z}\right)$.
9. Using Laplace transform of derivatives, find the Laplace transform of $\cos ^{2} \mathrm{t}$.
10. Given $L\{f(t)\}=\frac{1}{s(s+1)(s+2)}$, find $\lim _{t \rightarrow 0} f(t)$.
11. a) i) The eigenvectors of a real symmetric matrix A corresponding to the eigenvalues 2,3 , 6 are respectively $(1,0,-1)^{\mathrm{T}},(1,1,1)^{\mathrm{T}}$ and $(-1,2,-1)^{\mathrm{T}}$. Find the matrix A .
ii) Show that A satisfies its own characteristic equation and hence find A^{8}
if $\mathrm{A}=\left(\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right)$.
(OR)
b) i) Using Cayley-Hamilton theorem, find the inverse of the matrix
$A=\left(\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right)$.
ii) Reduce the quadratic form $3 x^{2}+2 y^{2}+3 z^{2}-2 x y-2 y z$ into a canonical form using an orthogonal transformation.
12. a) i) Find the angle between the normals to the surface $x y=z^{2}$ at the points $(-2,-2,2)$ and $(1,9,-3)$.
ii) Verify Stokes' theorem for $\overrightarrow{\mathrm{F}}=\mathrm{xy} \hat{\mathrm{i}}-2 \mathrm{yz} \hat{\mathrm{j}}-\mathrm{zx} \hat{\mathrm{k}}$ where S is the open surface of the rectangular parallelopiped formed by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0$ $\mathrm{y}=2$ and $\mathrm{z}=3$ above the xoy-plane.

(OR)

b) i) Find the values of a, b, cso that $\overline{\mathrm{F}}=\left(a x y+b z^{3}\right) \hat{\mathrm{i}}+\left(3 \mathrm{x}^{2}-\mathrm{cz}\right) \hat{\mathrm{j}}+\left(3 x z^{2}-\mathrm{y}\right) \hat{\mathrm{k}}$ is irrotational. For these values of a, b, c, find also the scalar potential of \vec{F}.
ii) Using Gauss' divergence theorem, evaluate $\iint_{\mathrm{S}} \overrightarrow{\mathrm{F}} \cdot \hat{\mathrm{n}} \mathrm{dS}$ where $\overrightarrow{\mathrm{F}}=\mathrm{y} \hat{\mathrm{i}}+\mathrm{x} \hat{\mathrm{j}}+\mathrm{z}^{2} \hat{\mathrm{k}}$ and S is the surface of the cylindrical region bounded by $x^{2}+y^{2}=a^{2}, z=0$ and $\mathrm{z}=\mathrm{b}$.
13. a) i) Show that $u=e^{x} \cos y$ is harmonic. Find the analytic function $\mathrm{w}=\mathrm{u}+\mathrm{iv}=\mathrm{f}(\mathrm{z})$ using Milne-Thompson method and hence find the conjugate harmonic function v .
ii) Given $w=u+i v=z^{3}$, verify that the families of curves $u=C_{1}$ and $\mathrm{v}=\mathrm{C}_{2}$ cut orthogonally.
b) i) If $f(z)$ is an analytic function, then prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
ii) Find the image of the triangular region in the z-plane bounded by the lines $x=0, y=0$ and $x+y=1$ under the transformation $w=e^{i \pi / 4} z$
14. a) i) If $f(a)=\oint_{C} \frac{3 z^{2}+7 z+1}{z-a} d z, C$ is the circle $|z|=2$, then find the values of $f(3), f^{\prime}(1+i)$ and $f^{\prime \prime}(1-i)$.
ii) Using Laurent's series expansion, find the residue of $f(z)=\frac{z^{2}}{(z-1)(z+2)^{2}}$ at its simple pole.
(OR)
b) Using contour integral, evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left.\left(x^{2}+1\right)^{2}\left(x^{2}+2 x+2\right)\right)}$.
15. a) i) Using Laplace transform, evaluate $\int_{0}^{\infty}\left(\frac{\cos \mathrm{at}-\cos \mathrm{bt}}{\mathrm{t}}\right) \mathrm{dt}$.
ii) Using convolution theorem, find $L^{-1}\left(\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right)$.
$(O R)$
b) i) Find the Laplace transform of the periodic function $f(t)=\left\{\begin{array}{ll}t & 0 \leq t \leq a \\ 2 a-t, & a \leq t \leq 2 a\end{array}\right.$ with period 2a.
ii) Using Laplace transform, solve $\left(\mathrm{D}^{2}+4 \mathrm{D}+13\right) \mathrm{y}=\mathrm{e}^{-\mathrm{t}} \sin \mathrm{t}$ given $y=D y=0$ at $t=0, D \equiv \frac{d}{d t}$.

